CW CO₂ LASER DRIVEN OXIDATION OF SOME PERHALOGENO-CYCLOALKENES

Josef Pola^a, Jaroslav Včelák^a and Zdeněk Chvátal^b

^a Institute of Chemical Process Fundamentals,

Czechoslovak Academy of Sciences, 165 02 Prague 6

^b Department of Organic Chemistry,

Prague Institute of Chemical Technology, 166 28 Prague 6

Received May 23, 1990 Accepted June 1, 1990

The title reaction of hexafluorocyclobutene, 1,2-dichloro-3,3,4,4-tetrafluorocyclobutene and decafluorocyclohexene studied at total pressure 13.3 and 16 kPa yield oxalyl halides COX.COX (X = F, Cl) and C_2F_4 that undergo consecutive reactions to COF₂, CO and X₂. The oxidation of decafluorocyclohexene is preceded by retro-Diels-Alder decomposition affording hexafluorocyclobutene and C_2F_4 . Two alternative mechanisms for the oxidation of the cyclobutenes are presented, one involving a novel cleavage of intermediary bicyclic dioxetanes. The decomposition of oxalyl fluoride into COF₂ and CO is favored over its oxidation.

Oxygenation reactions using triplet molecular oxygen are attracting renewed research interest¹⁻³. The gas-phase oxidation of perhaloolefins with molecular triplet ${}^{3}O_{2}$ oxygen is a complex reaction involving carbenes and it is sensitive to reactor material^{4,5}. Previous investigations by us have shown that truly gas-phase oxidation of acyclic perhaloolefins carried out as a cw CO₂ laser-photosensitized (SF₆) reaction proceeds via intermediary dioxetane to form two carbonyl halides^{6,7}. In this paper we report a cw CO₂ laser photosensitized oxidation of perhalogenocycloalkenes, i.e. hexafluorocyclobutene (HFCB), 1,2-dichloro-3,3,4,4-tetrafluorocyclobutene (DCCB), and decafluorocyclohexene (DFCH) and show that this reaction can be explained as taking place via a novel cleavage of intermediary dioxetanes.

EXPERIMENTAL

The oxidation of HFCB, DCCB and DFCH, the operation of a cw CO₂ laser and monitoring the reaction progress by IR spectroscopy were carried out as reported elsewhere^{6,7}. The reaction mixtures of perhalogenocycloalkene (5·3 kPa), SF₆ (2·7 or 5·3 kPa) and O₂ (5·3 kPa) were irradiated with unfocussed or slightly focussed laser beam of the output ranging from 10 to 14 W. Reaction products were identified by means of their characteristic infrared absorptions^{8,9} and mass-spectral fragmentation patterns¹⁰. The quantities of the reaction products were measured by IR spectroscopy using absorption bands at 1945 (COF₂), 1870 (COF.COF), 1100 (COFCl), 1416 (HFCB), 1335 or 1290 (C₂F₄), 850 (COCl₂), 760 and 1870 (COCl.COCl)

and 2 160 (CO) cm⁻¹. The amounts of HFCB, C_2F_4 and CFCl: CFCl were also checked by GC/MS conducted on a Shimadzu QP 1000 quadrupole spectrometer (20 and 70 eV ionizing voltage) equipped with a 1·2 m long column packed with Porapak P. The depletion of HFCB, DCCB and DFCH was followed by using their i.r. analytical bands at 1416 cm⁻¹ ($\epsilon = 0.0177$ kPa cm⁻¹), 1 370 cm⁻¹ ($\epsilon = 0.125$ kPa⁻¹ cm⁻¹) and 1 095 cm⁻¹ ($\epsilon = 0.0056$ kPa. . cm⁻¹).

Relative reactivities of HFCB, $Cl_2C=CF_2$ and CFCl=CFCl in the oxidation were ascertained by the technique⁷, where depletion of the olefins in mixtures HFCB- $Cl_2C=CF_2-O_2-SF_6$ and HFCB-CFCl=CFCl- O_2-SF_6 (all 2.7 kPa) upon the irradiation with the laser output 10 W were monitored by using analytical absorption bands at 1 416 (HFCB), 885 (CFCl: CFCl), and 1 320 (CF₂: CCl₂) cm⁻¹.

1,2-Dichlorodifluoroethene and 1,1-dichlorodifluoroethene were prepared according to the reported procedures⁷. HFCB (ref.¹¹) and DCCB (ref.¹²), both glc purity, were obtained by thermal cyclization of hexafluoro-1,3-butadiene and 2,3-dichloro-1,1,3,3-tetrafluorobutadiene. Oxalyl fluoride was prepared after the procedure¹³ and purified as reported¹⁴. DFCH (PCR Research Chemicals, Inc.), sulfur hexafluoride (Fluka, purum) and oxygen (Technoplyn, better than 99.5 per cent purity) were commercial samples.

RESULTS AND DISCUSSION

Hexafluorocyclobutene

The cw CO₂ laser photosensitized oxidation of HFCB affords COF₂, COF.COF, C_2F_4 , and CO. Mass balance indicates also formation of fluorine. Considering the mechanism of a stepwise ${}^{3}O_2$ addition across the double bond of perhaloolefins^{6.7}, the reaction products and their distribution along the reaction progress (Fig.1) suggest that the oxidation is consistent with Scheme 1, where intermediary dioxetane undergoes cleavage into COF.COF and C_2F_4 , the former being decomposed into COF₂ and CO, and the latter being oxidized⁶ into COF₂. The Scheme 1 is supported

Fig. 1

The reaction progress of laser photosensitized (10 W) oxidation of HFCB with HFCB-O₂-SF₆ (all 5·3 kPa) mixture. Designated products are COF₂ (\bullet), COF.COF (\circ), and C₂F₄ (\bullet) by the observed decomposition of COF.COF into CO and COF_2 . The laser photosensitized process (Fig. 2) is consistent with the stoichiometry

Scheme 1

and it occurs in the presence of oxygen. The reaction velocities (k_{total}) with mixtures COF.COF (5·3 kPa)–SF₆ (2·7 kPa) (13 W, unfocussed beam), COF.COF (5·3 kPa)–-SF₆ (2·7 kPa) (13 W, slightly focussed beam), and COF. COF (5·3 kPa)–SF₆ (2·7 kPa)–O₂ (5·3 kPa) (13 W, slightly focussed beam) are very alike and are in the given order 0·23 s⁻¹, 0·50 s⁻¹, and 0·60 s⁻¹.

The yield of COF_2 along the reaction progress reveals that COF_2 undergoes further decomposition into CO and F_2 as was observed¹⁵ under similar conditions. No occurrence of the products of the oxidation of COF.COF (CO₂ and C₂O₄F₂ ref.¹⁴) and of the reaction of fluorine with CO ($F_2C_2O_3$, CO₂, ref.¹⁶) shows that these reactions are insignificant. The oxidation of CO in the presence of halogen atoms¹⁷ and COF₂ disproportionation¹⁸ can be discarded on similar grounds.

To comment on the low probability of the pathway leading to $(CF_2COF)_2$ we mention that CF_3COF , which should be similarly stable under studied conditions as $(CF_2COF)_2$, is a major proucts of the laser photosensitized oxidation of $CF_3CF = CF_2$ (ref.⁷). The absence of $(CF_2COF)_2$ among the products of the oxidation of HFCB can thus suggest that intermediary dioxetane is not cleaved via strcture *I* so typical for acyclic dioxetanes^{19,20}. We did not succeed to prepare pure $(CF_2COF)_2$ and were thus unable to verify whether thermal stabilities of $(CF_2COF)_2$ and CF_3COF are really very alike. Unequivocal evidence for the mechanism presented in Scheme 1 cannot thus be given, since the observed products can be also explained by reactions in Scheme 2.

SCHEME 2

FIG. 2

The reaction progress of the laser photosensitized (10 W) decomposition of oxalyl fluoride with COF.COF ($5\cdot3$ kPa)-O₂ ($5\cdot3$ kPa)-SF₆ ($5\cdot3$ kPa) mixture. The circles relate to COF.COF (\bullet) and COF₂ (\bigcirc). The dashed line corresponds to a quantitative conversion of COF.COF into COF₂

Reactivity of HFCB in the oxidation exceeds that of acyclic fluorinated olefins. The mean effective temperature²¹ of the reacting olefin-SF₆-O₂ system (all 2.7 kPa, cell volume 140 cm³, laser output 10 W) reaches 710 K (refs^{6,7}). Regarding the reactivities of C₂F₄ and CF₃CF : CF₂ measured earlier⁷, the observed total rate constant ratios k_{HFCB} : $k_{\text{CFC1}=\text{CFC1}} = 2.13$ and k_{HFCB} : $k_{\text{CF2}=\text{CC1}_2} = 1.75$ (in 10 per cent error) show that HFCB react at T = 717 K with triplet oxygen about 1.9-2.1 times as rapidly as do C₂F₄ or CF₃-CF=CF₂.

1,2-Dichloro-3,3,4,4-tetrafluorocyclobutene

The cw CO₂ laser photosensitized oxidation of DCCB affords COF₂, C₂F₄, minor quantities of COCl.COCl, COFCl and COCl₂ and traces of SiF₄. The products and their amounts as the reaction progresses (Fig. 3) are in line with (Scheme 3), which is similar to Scheme 1 for HFCB.

SCHEME 3

Compared to the oxidation of HFCB, oxalyl halide COCl.COCl is produced in lower yields, which is apparently due to its easier decomposition into $COCl_2$ and CO. This, laser photosensitized decomposition of COCl.COCl was reported as occurring via molecular mechanism²².

Decafluorocyclohexene

The cw CO₂ laser photosensitized oxidation of DFCH yields $COF_2.COF.COF$, CO, C_2F_4 , HFCB and traces of SiF₄ and C_2H_6 . For the interpretation of its reaction progress (Fig. 4), knowledge of the laser photosensitized decomposition of DFCH is useful.

The latter reaction of DFCH gives equal amounts of C_2F_4 and HFCB along with very small amounts of C_2F_6 . These compounds were observed up to conversions almost 50 per cent with DFCH-SF₆ (both 5.3 kPa) mixture irradiated in 8.1 cm³

cell with unfocussed beam (8 W output), or with DFCH-SF₆ (both 1 kPa) mixture irradiated in 100 cm³ cell with focussed beam (12 W output). Hexafluoro-1,3-butadiene is, under the used conditions, transformed⁷ into HFCB. The products thus prove that retro Diels-Alder reaction (RDA) of DFCH into C_2F_4 and nascent hexafluoro-1,3-butadiene occurs in our thermalized system, as it does under the conditions of the i.r. multiphoton-induced²³ and the pulsed laser sensitized (SF₆. ref.²⁴) decomposition. Conventional thermal²⁵ decomposition of DFCH at 753 to 823 K produces perfluorinated 1-methylcyclopentene, 1,2-dimethylcyclopentene and mesitylene, while the UV irradiation in the presence of air affords^{26,27} mainly perfluoromethylenecyclopentane. The difference between the products of the conventional and pulsed laser initiated process was taken as an evidence of a non-thermal nature of the latter due to a massive energy transfer between the sensitizer SF_6 and DFCH (ref.²⁴). Our results show that RDA also ocuurs as a thermal reaction when heterogeneous, hot reactor effects are avoided. Similar reaction is in fact observed also under electron impact²⁸ when the major pathway for $C_6F_{10}^{++}$ is the extrusion of C_2F_4 to give $C_4F_6^{*+}$.

The occurence of significant quantities of C_2F_4 and HFCB during the CO₂ laser photosensitized oxidation of DFCH proves that RDA of DFCH is important even in the presence of O₂. We can therefore assume that COF₂, COF.COF and CO are

The reaction progress of laser-photosensitized (15 W) oxidation of DCCB. The points relate to COF_2 (\odot) and COFCl (\bullet)

The reaction progress of laser photosensitized (15 W) oxidation of DFCH with DFCH- $-O_2$ -SF₆ (all 5.3 kPa) mixtures. Designated products are COF₂ (\bullet), COF.COF (\odot), C₂F₄ (\odot), and HFCB (Φ)

formed by the reactions envisaged (Scheme 4) to take place during the oxidation of C_2F_4 (ref.⁶).

SCHEME 4

The gas-phase, truly homogeneous oxidation of perhalogenocycloalkenes appears to be a complex reaction. In the light of previous investigation of this oxidation of some acyclic haloalkenes^{6,7} it seems probable that this reaction proceeds via cleavage of the CX—CF₂ (X = F, Cl) bonds of 1,2-dioxabicyclo[2,2,0]hexahalogenoalkane and represents a novel decomposition pathway for the class of [2,2,0]hexanes that are known²⁹ to thermolyze via cyclohexene-1,4-diradical into dienes. Time resolved spectra of the oxidation of HFCB initiated with pulsed IR laser radiation together with theoretical treatment of this reaction might help to obtain more information and get here forwarded interpretation on firmer grounds.

The authors are greateful to Dr P. K. Chowdhury, B. A. R. C., Bombay for a gift of decafluorocyclohexene and to Mr J. Vitek for technical assistance.

REFERENCES

- 1. Feldman K. S., Simpson R. E., Parvez M.: J. Am. Chem. Soc. 108, 1328 (1986).
- 2. Yoshida J., Sakaguchi K., Isoe S., Hirotsu K.: Tetrahedron Lett. 28, 667 (1987).
- 3. Nelson S. F., Teasly M. F., Kapp D. L.: J. Am. Chem. Soc. 108, 5503 (1986).
- 4. Heicklen J.: Adv. Photochem. 7, 57 (1969).
- 5. Kartsov S. V., Valov P. I., Sokolov L. F., Blyumberg E. A., Sokolov S. V.: Izv. Akad. Nauk SSSR, Ser. Khim. 1975, 2230.
- 6. Pola J., Ludvík J.: J. Chem. Soc., Perkin Trans. 2, 1987, 1727.
- 7. Pola J., Chvátal Z.: J. Fluorine Chem. 37, 197 (1987).
- 8. Hencher J. L., King G. W.: J. Mol. Spectrosc. 16, 168 (1965).

- 9. Nielsen A. H., Burke T. G., Woltz P. J. H., Jones E. A.: J. Chem. Phys. 20, 596 (1952).
- 10. Majer J. R.: Adv. Fluorine Chem. 2, 55 (1961).
- 11. Chvátal Z., Brothánková M., Hrabal R., Dědek V.: Czech. 244 488 (1986).
- 12. Hrabal R., Chvátal Z., Dědek V.: 11th Int. Symp. Fluorine Chem., Berlin 1985; Abstracts P 52.
- 13. Tullock C. W., Coffman D. D.: J. Org. Chem. 25, 2016 (1960).
- 14. Czerepinski R., Cady G. H.: Inorg. Chem. 7, 169 (1968).
- 15. Pola J., Engst P., Horák M.: Collect. Czech. Chem. Commun. 47, 912 (1982).
- Heras J. M., Arvia A. J., Aymonino P. J., Schumacher J. H.: Z. Phys. Chem. (Frankfurt) 28, 250 (1961).
- 17. Gaisinovich M. S., Ketov A. N.: Zh. Neorg. Khim. 14, 1147 (1969).
- 18. Stuckey W., Heicklen J., Knight V.: Can. J. Chem. 47, 2329 (1969).
- 19. Benson S. W.: Thermochemical Kinetics, p. 239. Wiley, New York 1976.
- 20. Bogan D. J., Durant J. L., Sheison R. S., Williams F. W.: Photochem. Photobiol. 30, 3 (1979).
- 21. Shaub W. M., Bauer S. H.: Int. J. Chem. Kinet. 7, 509 (1975).
- 22. Pola J.: Collect. Czech. Chem. Commun. 47, 3258 (1982).
- 23. Chowdhury P. K., Mittal J. P., Rama Rao K. V. S.: J. Photochem. 24, 373 (1984).
- 24. Chowdhury P. K., Rama Rao K. V. S., Mittal J. P.: J. Photochem. 28, 503 (1985).
- 25. Dvorníkova K. V., Platonov V. E., Urasimova V. P., Yakobson G. G.: Izv. Akad. Nauk, Ser. Khim. 1971, 2361.
- 26. Cammaggi G., Gozzo F.: J. Chem. Soc., C 1971, 925.
- 27. Camaggi G., Gozzo F.: J. Chem. Soc. 1967, 236.
- 28. Bruce M. I.: Org. Mass Spectrom. 1, 503 (1968).
- 29. Kaufmann D., de Meijere A.: Tetrahedron Lett. 1979, 787.

Translated by the author (J.P.).